Thermosensitive Self-Assembling Block Copolymers as Drug Delivery Systems

نویسندگان

  • Giulia Bonacucina
  • Marco Cespi
  • Giovanna Mencarelli
چکیده

Self-assembling block copolymers (poloxamers, PEG/PLA and PEG/PLGA diblock and triblock copolymers, PEG/polycaprolactone, polyether modified poly(Acrylic Acid)) with large solubility difference between hydrophilic and hydrophobic moieties have the property of forming temperature dependent micellar aggregates and, after a further temperature increase, of gellifying due to micelle aggregation or packing. This property enables drugs to be mixed in the sol state at room temperature then the solution can be injected into a target tissue, forming a gel depot in-situ at body temperature with the goal of providing drug release control. The presence of micellar structures that give rise to thermoreversible gels, characterized by low toxicity and mucomimetic properties, makes this delivery system capable of solubilizing water-insoluble or poorly soluble drugs and of protecting labile molecules such as proteins and peptide drugs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Pentablock Copolymers as Thermosensitive Self-Assembling Micelles for Ocular Drug Delivery

Many studies have focused on how drugs are formulated in the sol state at room temperature leading to the formation of in situ gel at eye temperature to provide a controlled drug release. Stimuli-responsive block copolymer hydrogels possess several advantages including uncomplicated drug formulation and ease of application, no organic solvent, protective environment for drugs, site-specificity,...

متن کامل

Supramolecular self-assembly of nonlinear amphiphilic and double hydrophilic block copolymers in aqueous solutions.

Supramolecular self-assembly of block copolymers in aqueous solution has received ever-increasing interest over the past few decades due to diverse biological and technological applications in drug delivery, imaging, sensing and catalysis. In addition to relative block lengths, molecular weights and solution conditions, chain architectures of block copolymers can also dramatically affect their ...

متن کامل

Affinity-Modulation Drug Delivery Using Thermosensitive Elastin-Like Polypeptide Block Copolymers

Affinity-Modulation Drug Delivery Using Thermosensitive Elastin-Like Polypeptide Block Copolymers by Andrew J. Simnick Department of Biomedical Engineering Duke University Date:_______________________ Approved: ___________________________ Ashutosh Chilkoti, Ph.D., Supervisor ___________________________ Mark W. Dewhirst, Ph.D., D.V.M. ___________________________ Kam W. Leong, Ph.D. _____________...

متن کامل

Magnetothermally responsive star-block copolymeric micelles for controlled drug delivery and enhanced thermo-chemotherapy.

Magnetothermally responsive drug-loaded micelles were designed and prepared for cancer therapy. These specially designed micelles are composed of the thermo-responsive star-block copolymer poly(ε-caprolactone)-block-poly(2-(2-methoxyethoxy)ethyl methacrylate-co-oligo(ethylene glycol)methacrylate) and Mn, Zn doped ferrite magnetic nanoparticles (MZF-MNPs). The thermo-responses of 6sPCL-b-P(MEO2M...

متن کامل

In situ gelling polyvalerolactone-based thermosensitive hydrogel for sustained drug delivery.

Biodegradable poly(ethyleneglycol)-poly(valerolactone)-poly(ethyleneglycol) [PEG-PVL-PEG] copolymers were synthesized through ring opening polymerization of δ-valerolactone (VL) followed by the coupling of monomethoxy poly(ethyleneglycol-poly(valerolactone) (mPEG-PVL) with hexamethylene diisocyanate (HDI). The copolymers were characterized by (1)H NMR, FT-IR, and GPC. Block copolymers of PEG an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011